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An identification technique is devised for SDOF dynamical mechanical systems under
random excitations. The system is assumed to be governed by a non-linear equation of
motion in general form, in which the restoring force and the dissipative terms are given
by arbitrary power functions. Algebraic equations are obtained for the expectations of
some suitable excitation and response quantities. It is shown that these equations are valid
for any stationary random excitations if the system attains the steady state. Based on these
equations, an identification technique has been devised and verified experimentally for
white noise and coloured (pink) noise random excitations.
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1. INTRODUCTION

Mechanical systems, such as machine elements, are usually subjected to complex dynamical
excitations. Such excitations are often idealized as stationary stochastic processes, both
time continuous and of impulsive type [1–3]. As concerns the structural element, its service
life expectancy, which depends on the degree of wear or deterioration, is the most essential.
The wear, or deterioration, is determined by the change of element properties, which are
due to the dynamical loadings. If the behaviour of the mechanical system is linear, then
the identification techniques based on the experimental modal analysis may be used to
evaluate directly the modal parameters [4–6]. These parameters define the dynamical
properties of the system under investigation and their changes determine the deterioration
of the system.

In general, it appears that an a priori assumed linear model of the structural
element behaviour is an oversimplification if, for example, the energy losses taking place
in a spring-damping machine element and processes connected with material aging are to
be determined precisely. In these cases suitable tests can be performed on especially
designed simple dynamical systems, in which the spring-damping element plays the
dominant role in the overall system behaviour (e.g., systems having one or one and a
half degrees of freedom). Then, in the cases in which the dissipation function is
essentially non-linear, it is much easier to determine the change of its form. On the other
hand, the identification of the physical system (especially of the non-linear one) should be
performed for a wider class of excitations than purely harmonic or single-impulse
excitations.
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In references [7–10] the procedure is presented for the determination of the damping
characteristics of the mechanical system governed by the equation

mẍ+Fd (ẋ)+Fs (x)= p(t). (1)

In the above-mentioned procedure no a priori assumed specific form of the dissipative
function Fd (ẋ) is required. However, the excitation must be either harmonic, or periodic
of such a form that the induced response is harmonic [9, 10]. The hypothesis of parallel
action of the purely dissipative element Fd (ẋ) and purely elastic element Fs (x), which is
in fact expressed by equation (1), may seem questionable. It can, however, be verified
experimentally [9, 11].

Let us assume that as a result of the above-mentioned procedure the equation governing
the system behaviour has been established in the form

mẍ+ h sgn ẋ+ s
n

n=1

cnẋn + s
q

m=1

kmxm = p(t) (2)

(in which n and q are arbitrary large numbers) and in what follows only the changes of
parameters m, h, cn and km of the system, which are due to the arbitrary dynamic excitation
p(t), are of interest. If the excitation can be idealized as an arbitrary deterministic periodic
function, with period T, then the parameters appearing in equation (2) can be evaluated
with the help of methods given in references [12–14]. These methods are essentially based
on the following identification equations: energy balance equation,

ap
x = haS(v)

x + s
n

n=1

cna
vn

x ; (3)

power balance equation,

ap
v =maa

v + s
q

m=1

kma
xm

v . (4)

Here az
y denotes the area within the closed loop of the relationship z( y), where z and y

denote suitable signals, e.g., excitation p(t), displacement x(t), velocity v(t), acceleration
a(t), sign of velocity S(v), etc. For example, ax

p denotes the area within the well known
dynamic hysteresis loop and ax

v the area within the phase portrait v(x).
Equations (3) and (4) are satisfied for any dynamic excitations which induce the periodic

response of the system. Equation (3) results from multiplying both sides of equation (2)
by an infinitesimal displacement dx= ẋ dt and subsequently integrating over the whole
period T. It can be noted that if the periodicity relationships p(t)= p(t+T) and
x(t)= x(t+T) hold, then the energy balance equation is obtained in the form (3) [12].
Similarly, multiplying both sides of equation (2) by an infinitesimal velocity dv= ẍ dt and
integrating yields equation (4).

In the present paper it is shown that similar equations can be obtained for dynamic
excitations in form of ergodic, stationary stochastic processes. The equations are next used
for identification of damping in a certain non-linear dynamical system subjected to a white
noise and one type of coloured noise excitation. The specific coloured noise with a spectral
density inversely proportional to the frequency was used. Such a noise is termed as a pink
noise (cf., [15]), by analogy with pink light, because the major part of its power spectrum
is located in the low frequency region.
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2. ENERGY BALANCE EQUATION FOR RANDOM EXCITATIONS

Assume that the excitation p(t) in equation (2) is a stationary stochastic process and,
in particular, that its one-dimensional probability distribution is time-invariant. In
addition, assume that the process is ergodic. The dynamical system is assumed to be
asymptotically stable: i.e., it attains steady state when t:a. As is well known, the steady
state response to a stationary excitation is also a stationary process, and in particular the
steady state response statistical moments (the moments of the process itself and of its first
derivative) are constant.

Multiplying both sides of equation (2) by the elementary displacement dx= ẋ dt and
performing time averaging over the interval T, one obtains

m
1
Tg

T

0

ẍẋ dt+
1
T

hg
T

0

(sgn ẋ)ẋ dt+
1
T g

T

0

s
n

n=1

cnẋnẋ dt+
1
T g

T

0

s
q

m=1

kmxmẋ dt=
1
T g

T

0

p(t)ẋ dt.

(5)

Assuming that the stationary response process is also ergodic, one can replace the time
averaging by ensemble averaging: i.e., by the expectation. Then it can be noticed that the
first integral and the fourth group of integrals on the left side of equation (5) are equal
to zero. For example, in the case of the first integral one has

lim
T:a $1

T g
T

0

ẍẋ dt%=E[ẍẋ]=
1
2

d
dt

E[ẋ2]. (6)

However, since the velocity v(t)= ẋ(t) is a stationary process, it follows that

E[ẋ2]= constantc (d/dt)E[ẋ2]=0. (7)

Likewise, in the case of any of the integrals of the fourth group the following relationshp
is valid,

lim
T:a $1

T g
T

0

xmẋ dt%=E[xmẋ]=
1

m+1
d
dt

E[xm+1], (8)

and as the process x(t) is stationary it follows that

E[xm+1]=constantc (d/dt)E[xm+1]=0. (9)

The energy balance equation for stationary, ergodic random excitations is obtained in the
form

hE[(sgn v)v]+ s
n

n=1

cnE[vn+1]=E[pv]. (10)

This equation can be used to evaluate the constants h and cn which determine the
damping function of the actual system, if the expected (mean) values of the signals
((sgn v)v, vn+1, pv) are measured.
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3. POWER BALANCE EQUATION FOR RANDOM EXCITATIONS

Under the same assumptions about the excitation process p(t) and the dynamical system
as in section 2, the power balance equation is obtained.

Multiplying both sides of equation (2) by the elementary velocity dv= ẍ dt and
performing the time averaging over the interval T, one obtains

m
1
Tg

T

0

ẍẍ dt+
1
T

h g
T

0

(sgn ẋ)ẍ dt+
1
T g

T

0

s
n

n=1

cnẋnẍ dt+
1
T g

T

0

s
q

m=1

kmxmẍ dt=
1
T g

T

0

p(t)ẍ dt.

(11)

As before, the time averaging is replaced by the expectation. Here, however, the second
integral and the third group of integrals on the left side of equation (11) are equal to zero.
For example, in the case of the second integral, which describes the dry friction, one has

lim
T:a $1

T g
T

0

(sgn v)v̇ dt%=E[S(v)v̇]= (d/dt)E[=v =]. (12)

As the process v(t) is stationary (its probability density function is time invariant) it follows
that

E[=v =]= constantc (d/dt)E[=v =]=0. (13)

In the case of the third group of integrals in equation (19), the following relationship is
valid:

lim
T:a $1

T g
T

0

vnv̇ dt%=
1

n+1
d
dt

E[vn+1]=0. (14)

Upon using equations (12)–(14), equation (11) is obtained as

mE[a2]+ s
q

m=1

kmE[xma]=E[pa], (15)

where a denotes the acceleration a(t) of the mass m.
Notice that equations (10) and (15) are analogous to equations (3) and (4), respectively.

These equations are, in principle, satisfied by any random excitations (of time-continuous
or impulsive type) if only these excitations induce steady state response. Such equations
can be used to evaluate the unknown parameters m, h, cn and km of the system under
investigation if the expectations which appear in these equations are known (e.g., from
experiments) and provided that for these specific values of the parameters equations (10)
and (15) are linearly independent.

4. EXAMPLE APPLICATION

In order to verify the above described technique, an experiment has been performed for
the non-linear dynamical system shown in Figure 1. This system has been designed as an
analogue machine. The form of the non-linear damping function is specified by the three
coefficients c1, c2 and c3 (see Figure 2).
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Figure 1. The dynamical system. mẍ+Fd (ẋ)+Fs (x)= p(t); Fd (ẋ)= c1ẋ+ c3ẋ3 + c5ẋ5, F5(x)= kx; m=8 kg,
k1 =9800 kg/s2, c1 =260 kg/s, c3 =−340 kgs/m2, c5 =320 kg s3/m4.

Figure 2. The damping function of the system tested (a), and the damping functions obtained in the cases (b),
(c) and (d). (a) Fixed damping function Fd (ẋ)=260ẋ−340ẋ3 +320ẋ5; (b) for RN only, F
 d (ẋ)=265,
4ẋ−451ẋ3 +425, 8ẋ5; (c) for PN only, F
 d (ẋ)=258, 1ẋ−309, 8ẋ3 +251, 2ẋ5; (d) for RN and PN, F
 d (ẋ)=261,
28ẋ−376ẋ3 +340, 16ẋ5.

The purpose of the experiment was to determine the damping function Fd (ẋ) of the
system under random excitations. Two types of random excitations have been used:
random noise excitation (RN); pink noise excitation (PN). In the experiment, as a
generator of random noises a two-channel analyzer HP35665 was used, which was
connected with the tested system as shown in Figure 3.

In the case of the tested system equation (10) simplifies to

c1E[v2]+ c3E[v4]+ c5E[v6]=E[pv]. (16)

Figure 3. The connection of two-channel dynamic signal analyzer in the procedure.



.   .36

Figure 4. Examples of the RN excitation (a), the response (b) and functions F2, F3, . . . , F5, (c)–(f) (according
to row 4 in Table 1).
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Figure 5. As Figure 4, but for PN excitation (according to row 17 in Table 2).
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T 1

Mean values obtained from the experiment with the help of F2, F3, F4 and F5 (random noise)

No. F2=E[v2] F3=E[v4] F4=E[v6] F5=E[ pv]

1 0·18966 0·051314 0·021031 0·045425
2 0·12500 0·022541 0·0060864 0·03150
3 0·13159 0·027070 0·0089229 0·032954
4 0·090996 0·015092 0·0042637 0·022198
5 0·02695 0·0011436 0·00008032 0·008040
6 0·16211 0·039727 0·015581 0·03832...

...
...

...
...

32 0·10614 0·0159143 0·0034727 0·02755

T 2

Mean values obtained from the experiment with the help of F2, F3, F4, and F5, ( pink noise)

No. F2=E[v2] F3=E[v4] F4=E[v6] F5=E[ pv]

1 0·131721 0·026851 0·00927514 0·0338197
2 0·16147 0·0435021 0·0177616 0·039988
3 0·20299 0·069316 0·0406493 0·049971...

...
...

...
...

17 0·188486 0·043547 0·013526 0·046946...
...

...
...

...
32 0·251428 0·0753756 0·0309312 0·062872

In order to measure the mean values E[v2], E[v4], E[v6] and E[pv] which appear in
equation (16) the system analyzer was used, which allowed one to create the following
functions of the signals v(t) and p(t): F1=TIME2 ( TIME2c time history of
v2(t); F2=FFT(F1)c Fourier transform of v2(t); F3=FFT (F1 ( F1)c Fourier
transform of v4(t); F4=FFT (F1 ( F1 ( F1)c Fourier transform of v6(t);
F5=FFT(TIME1 ( TIME2)c Fourier transform of p(t)v(t).

Some examples of the results of the analysis are shown in Figures 4 and 5 and the
corresponding data set is given in Table 1. The set covers all data which were used in the
identification procedure. For example, the data of row 4 (see Table 1) have been obtained
from results shown in Figure 4 as follows: (1) from F2 (Figure 4(c)) one has Y: 9·0996 V pk2

and hence E[v2]=0·090996(m/s2) (according to column F2=E[v2] in Table 1); (2) from
F3 (Figure 4(d)) one has Y: 150·92 kV22 and hence E[v4]=0·015092(m/s)4 (according to
column F3=E[v4] in Table 1); (3) from F4 (Figure 4(e)) one has Y: 4·2637 kV32 and hence
E[v6]=0·00426378(m/s)6 (according to column F4=E[v6] in Table 1); (4) from F5
(Figure 4(f)) one has Y: 2·2198 mV pk2 and hence F5=E[ pv]=0·022198(Nm/800 s)†
(according to column E[ pv] in Table 1).

The parameters c1, c3 and c5 of the damping function have been estimated based on
equation (16) and on data given in Tables 1 and 2, for the random noise only (Table 1),
for the pink noise only (Table 2) and for both excitations together. The results obtained
on applying the least sum of squared errors condition are shown in Table 3.

In computations a modified equation in the form

c1 + c3y1 + c5y2 = z (17)

† The number 800 appearing in the dimension of theE[pv] results from themeasurement of the rescaled excitation
p(t) of the analogue model.
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T 3

Numerical results of experiments

Given Results obtained Results obtained Results obtained
values for random noise (RN) for pink noise (PN) for both noises

c1 260 265·4 258·1 261·28
c3 −340 −451 −309·8 −376·0
c5 320 425·8 251·6 340·16

was used, which was obtained from equation (16) ( y1 =E[v4]/E[v2], y2 =E[v6]/E[v2] and
z=E[ pv]/E[v2]. The level of random signals has been assumed in such a way as to obtain
uniform distribution of the velocity amplitude over the interval [0, 1 m/s]. The estimates
of the damping function obtained for each of the cases considered are compared in
Figure 2.

5. CONCLUSIONS

The comparison of experimental results (Table 3) reveals that values of the estimators
ĉ1 of coefficient c1 are in each of the three cases considered very close to the given value
c1 =260. Larger differences occur in the case of coefficients c3 and c5. Nevertheless, the
functions F
 d (ẋ) estimated from the estimators of the latter coefficients are (in the
considered interval of velocity variation) very close (in a qualitative sense) to the given
function (cf., Figure 2). The results obtained should be considered satisfactory as the tests
have been carried out in large part with the help of analogue technique.

Another problem, which is not dealt with in the present paper, is how the change of
the observation time and the resulting frequency range affect the results. In the present
case the frequency range was assumed a priori as 0–200 Hz, because the system natural
frequency was 5–8 Hz (cf., Figures 4 and 5).

Similar investigations for systems with discontinuous characteristics (e.g., with dry
friction) have also been carried out by the authors and the results are to be published.

It should be noted that the technique presented herein for a SDOF system can be
extended to chain-like MDOF systems (cf., [9]).
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